223,084 views
18 votes
18 votes
Solve the following equation by completing the square. 12x^2 - 48x = -39​

User Martijn Kooij
by
2.7k points

1 Answer

20 votes
20 votes

Answer:


\large\boxed{\boxed{x = \begin{cases} ( √(3) )/(2) + 2 \\ - ( √(3) )/(2) + 2 \end{cases}}}

Explanation:

to understand this

you need to know about:

  • quadratic equation
  • PEMDAS

let's solve:


  1. \sf divide \: both \: sides \: by \: 12 : \\ \sf {x}^(2) - 4x = - (13)/(4)

  2. \sf \: add \: { - 2}^(2) \: to \: both \: sides : \\ \sf { {x}^(2) } - 4x + ( - {2}^(2) ) = -(13)/(4) + ( { - 2}^(2) ) \\ {x}^(2) - 4x + 4 = -(13)/(4) + 4

  3. \sf simplify \: addition : \\ \sf { {x}^(2) } - 4x + 4 = (3)/(4)

  4. \sf use \: {a}^(2) - 2ab + {b}^(2) = (a - b {)}^(2) : \\ \sf (x - 2 {)}^(2) = (3)/(4)

  5. \sf squre \: root \: both \: sides : \\ \sf \sqrt{(x - 2 {)}^(2) } = \pm \sqrt{ (3)/(4) } \\ \begin{cases} x - 2 = ( √(3) )/(2) \\x - 2 = - ( √(3) )/(2) \end{cases}

  6. \sf add \: 2 \: to \: both \: sides : \\ \sf \begin{cases}x = ( √(3) )/(2) + 2 \\ x = - ( √(3) )/(2) + 2 \end{cases} \\ \therefore \: x = \begin{cases} ( √(3) )/(2) + 2 \\ - ( √(3) )/(2) + 2 \end{cases}
User Sean Magyar
by
2.8k points