Given the quadratic equation:
![x^2+9x+8](https://img.qammunity.org/2023/formulas/mathematics/college/khf22v5rracb3l9r5z55at6ci8ui36cl7x.png)
To solve it you have to use the quadratic formula
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
For the given function the coefficients are:
a=1
b=9
c=8
Replace them in the formula:
![\begin{gathered} x=\frac{-9\pm\sqrt[]{(9)^2-4\cdot1\cdot8}}{2\cdot1} \\ x=\frac{-9\pm\sqrt[]{81-32}}{2} \\ x=\frac{-9\pm\sqrt[]{49}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xqoc3bngy8nx7kdci2ex6wlhy1lp8de7zn.png)
Now you have to calculate it using separate ways.
Positive:
![\begin{gathered} x=\frac{-9+\sqrt[]{49}}{2} \\ x=(-9+7)/(2) \\ x=(2)/(2) \\ x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j8jxh0adsfxtmg0dl7pjs6udm9csrbb4ku.png)
Negative:
![\begin{gathered} x=\frac{-9-\sqrt[]{49}}{2} \\ x=(-9-7)/(2) \\ x=-(16)/(2) \\ x=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j5gw0q19yjhik15zintad8i35xc0cvas0n.png)
The possible values for x are 1 and -8, the correct option is the first one.