Given a segment defined by the endpoints A(x1,y1) and B(x2,y2), the coordinates of the midpoint from A to B is given by (xm,ym):
![\begin{gathered} x_m=(x_1+x_2)/(2) \\ y_m=(y_1+y_2)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8fjal7t75ghkv2cfoa5zzn0g7nep1wqls9.png)
We are given the coordinates of the midpoint (xm,ym)=(-6,-16), and the coordinates of one of the endpoints, say A=(3,3).
We need to find the coordinates of B(x2,y2). Solving the first equation for x2:
![x_2=2x_m-x_1](https://img.qammunity.org/2023/formulas/mathematics/college/1gl7r6zneawxi0nco30ah43kfbfcso7oao.png)
Substituting:
![x_2=2\cdot(-6)-3=-12-3=-15](https://img.qammunity.org/2023/formulas/mathematics/college/6ivc97jegbubrt81vbbz0dl0ueyc0hpl8d.png)
Solving the second equation for y2:
![y_2=2y_m-y_1=2\cdot(-16)-3=-32-3=-35](https://img.qammunity.org/2023/formulas/mathematics/college/amzzuqgxhbqd4lmr0rluzmjarmvbdbr8nv.png)
Thus, the coordinates of the other endpoint are:
B(-15,-35)