88.9k views
5 votes
Which of the following is not a solution of 3x - y>-2? (0,1) (-2, 2) (1, 2) (1,3)

1 Answer

5 votes

Answer:

(-2, 2)

Step-by-step explanation:

We test the points algebraically:

At point (0,1): x=0, y=1


\begin{gathered} 3x-y=3(0)-1=-1 \\ -1>-2(True) \end{gathered}

At point (-2,2): x=-2, y=2


\begin{gathered} 3x-y=3(-2)-2=-6-2=-8 \\ -8>-2(False) \end{gathered}

At point (1,2): x=1, y=2


\begin{gathered} 3x-y=3(1)-2=3-2=1 \\ 1>-2(True) \end{gathered}

At point (1,3): x=1, y=3


\begin{gathered} 3x-y=3(1)-3=3-3=0 \\ 0>-2(True) \end{gathered}

We observe that only the point (-2,2) gives a false result.

Therefore, (-2,2) is not a solution of 3x - y>-2.

User Birish
by
5.7k points