64.9k views
5 votes
Given Functions g(x) = 1/√x and f(x) = x^2 -4, state the domains of the following functions using interval notation.domain of g(x)/f(x):domain of g(f(x)):domain of f(g(x)):

User Ryen
by
3.7k points

1 Answer

2 votes

We have the following functions


g\mleft(x\mright)=\frac{1}{\sqrt[]{x}},f(x)=x^2-4

Let's determine the domain of the following:

1. domain of g(x)/f(x):


(g(x))/(f(x))=\frac{\frac{1}{\sqrt[]{x}}}{x^2-4}

Let's simplify the above


\begin{gathered} =\frac{1}{\sqrt[]{x}\cdot(x^2-4)} \\ =\frac{1}{\sqrt[]{x}}\cdot(1)/(x^2-4) \end{gathered}

The above it's like having to functions, hence two domains:


\begin{gathered} domain\mleft((1)/(√(x))\mright)\colon\mleft(0,\: \infty\: \mright) \\ domain\mleft((1)/(x^2-4)\mright)\colon\mleft(-\infty\: ,\: -2\mright)\cup\mleft(-2,\: 2\mright)\cup\mleft(2,\: \infty\: \mright) \end{gathered}

Therefore, the domain of g/f (x) is:


\mathrm{Domain\: of\: }\: (1)/(√(x)\left(x^2-4\right))\: \colon\mleft(0,\: 2\mright)\cup\mleft(2,\: \infty\: \mright)

2. domain of g(f(x)):


g(f(x))=g(x^2-4)=\frac{1}{\sqrt[]{x^2-4}}

Since, x^2-4 > 0, therefore domain of g(f(x)) is the following:


\mathrm{Domain\: of\: }\: (1)/(√(x^2-4))\: \colon\mleft(-\infty\: ,\: -2\mright)\cup\mleft(2,\: \infty\: \mright)

3. domain of f(g(x)):​


f(g(x))=f(\frac{1}{\sqrt[]{x}})=(\frac{1}{\sqrt[]{x}})^2-4

Since, x>0, Therefore, the domain of f(g(x)) is:


domain(\frac{1}{\sqrt[]{x}}^2-4)\colon(0,\infty)

User Milan M
by
2.9k points