180k views
3 votes
f(x) = x2 + bxg(x) = 3x2 - 9xThe functions f and g are defined above, where b is a constant. Iff(x) (x) = 3x4 – 8x3 – 3x2, what is the value of b?

f(x) = x2 + bxg(x) = 3x2 - 9xThe functions f and g are defined above, where b is a-example-1
User Dorus
by
4.3k points

1 Answer

2 votes

Given the functions:


\begin{gathered} f(x)=x^2+bx \\ \\ g(x)=3x^2-9x \\ \\ f(x)*g(x)=3x^4-8x^3-3x^2 \end{gathered}

Let's find the value of b.

Let's multiply the individual functions.

Solving further, we have:


\begin{gathered} f(x)*g(x)=(x^2+bx)(3x^2-9x) \\ \\ \text{ Expand using FOIL method:} \\ x^2(3x^2-9x)+bx(3x^2-9x) \end{gathered}

Apply distributive property:


f(x)*g(x)=3x^4-9x^3+3bx^3-9bx^2

Now, to match this expression to the given expression let's check a value we can input for b.

Take b = 1/3.

Substitute 1/3 for b and simplify:


\begin{gathered} f(x)*g(x)=3x^4-9x^3+3((1)/(3))x^3-9((1)/(3))x^2 \\ \\ =3x^4-9x^3+1x^3-3x^2 \\ \\ =3x^4-8x^3-3x^2 \end{gathered}

Therefore, the value of b is 1/3

ANSWER:


(1)/(3)

User SomeHowWhite
by
4.5k points