First we have to calculate the area of the carrot section.
Using the formula for rectangle's area, which is base multiplied by the height.
![4\cdot10^3\cdot5\cdot10^5=4\cdot5\cdot10^3\cdot10^5=20\cdot10^8=2\cdot10^9\text{ .}](https://img.qammunity.org/2023/formulas/mathematics/college/m8oggo4fdk6dhekenrm4nfui3qtves425f.png)
The area of the carrot section is 2x10^9 square feet.
Then, we are going to calculate the area of the corn section.
![6\cdot10^4\cdot3\cdot10^4=6\cdot3\cdot10^4\cdot10^4=18\cdot10^8=1.8\cdot10^9\text{ .}](https://img.qammunity.org/2023/formulas/mathematics/college/m2fr3l63zqviv70081ah0zvfhsm72ld4px.png)
The area of the carrot section is 1.8x10^9 square feet.
Subtracting the area of the corn section from the area of the carrot section we get
![2\cdot10^9\text{ -}1.8\cdot10^9=(2-1.8)\cdot10^9=0.2\cdot10^9=(2)/(10)\cdot10^9=2\cdot10^8](https://img.qammunity.org/2023/formulas/mathematics/college/lkpz0csbc2pv8e19nztm83uevvqxze6i1r.png)
a. The area of carrot section is 2x10^8 square feet greater than the area of the corn section.
b. The area of the carrot section is 2x10^9 square feet.
c. The area of the corn section is 1.8x10^9 square feet.