ANSWER
![3.9705\text{ seconds}](https://img.qammunity.org/2023/formulas/physics/college/pkfrp2xldx3uy5bmuydcgihvzm6svc62v1.png)
Step-by-step explanation
To find how many seconds it will take to travel 71 feet, substitute the value of d to be 71 feet and solve for t in the equation:
![\begin{gathered} 71=2t+4t^2 \\ \Rightarrow4t^2+2t-71=0 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/38hgn6idpggbrm1z2dg3og6fwceoi02cgk.png)
Solve for t using the Quadratic formula:
![a=4,b=2,c=-71](https://img.qammunity.org/2023/formulas/physics/college/rxri9y5nyrnu43j77e6flhc9jvsba8k8g6.png)
Therefore, we have:
![\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ t=\frac{-2\pm\sqrt[]{2^2-(4\cdot4\cdot-71)}}{2\cdot4} \\ t=\frac{-2\pm\sqrt[]{4+1136}}{8}=\frac{-2\pm\sqrt[]{1140}}{8} \\ \Rightarrow t=(-2+33.7639)/(8);t=(-2-33.7639)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fxj68hguske0697hn2ddccod6apmeb9wj6.png)
Since time cannot be negative, we only use the first value:
![\begin{gathered} t=(-2+33.7639)/(8)=(31.7639)/(8) \\ t=3.9705\text{ seconds} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/27d8bk53e13vrfnz3n0vjaw8iytsl6nfxa.png)
That is the time it will take.