First, we have to find the radius of the circle. Let's use the arc length formula.
![L=2\pi r\cdot(\theta)/(360)](https://img.qammunity.org/2023/formulas/mathematics/college/m2o46wkiwk55fie5jv99o5relazeyeo9nf.png)
Where L = 32 pi inches, theta = 45. Let's use this information and solve for r.
![\begin{gathered} 32\pi=2\pi r\cdot(45)/(360) \\ r=(32\cdot360)/(2\cdot45) \\ r=(11520)/(90) \\ r=128 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5agjd2dlicr84hdqx0j5wy678dq79crks5.png)
The radius is 128 inches long.
Now, we use the formula for circumference.
![C=2\pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/noytl63lm1q06t23qsdkycir68uwxrmxzb.png)
Let's replace the radius we found before.
![C=2\pi\cdot128=256\pi](https://img.qammunity.org/2023/formulas/mathematics/college/ekp7vhs0xkrk321dqlt03vkqpg3r2ee0gi.png)
Therefore, the circumference of the circle is 256pi inches.