Given:
The point P(x,y) is given as,

The objective is to find the value of sinθ.
Step-by-step explanation:
Since the terminal side of angleθ meets the unit circle, the general equation of circle can be represented as,

The position of point P on unit circle can be represented as,
To find y:
On further solving the equation (1),
![\begin{gathered} y^2=1-x^2 \\ y=\sqrt[]{1-x^2}\text{ . . . .. (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bp9pyzrmge0ne7ml70692ohhge8207yiyd.png)
On plugging the value of x in equation (2),
![y=\sqrt[]{1-((33)/(65))^2}](https://img.qammunity.org/2023/formulas/mathematics/college/gyt5gywvlg8bkzcf9lj1ht3s2vz7ha404r.png)
On solving the equation for y,
![\begin{gathered} y=\sqrt[]{1-(1089)/(4225)} \\ =\sqrt[]{(4225-1089)/(4225)} \\ =\sqrt[]{(3136)/(4225)} \\ =\pm(56)/(65) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mdjmmo7f8evimf7l2xokyyl4rtx27e2cl9.png)
Thus, the value of sinθ will be,

Since P is in IV quadrant,

Hence, the value of sinθ=-56/65.