The radius of ferris wheel is r = 29 feet.
The equation for the vertical distance is,
![y=r\sin \theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/lmf7izx1pswbv6tkqu8pk2d2ypo6piuwhk.png)
For rotation of 3.5 radians,
![\begin{gathered} \theta=3.5*(180)/(\pi) \\ =200.53^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k1n45lh38pu7zi4piv0sytg7squ25wbqyd.png)
Determine the vertical distance of Josie.
![\begin{gathered} y=29\cdot\sin 200.53 \\ =29\cdot(-0.3508) \\ =-10.1732 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5u6qzzk2dldma4obmaxjmmkgecfxgp4sgv.png)
Josie is 10.1732 feet below the horizontal.
Part B:
The distance travelled by Josie is s = 237 feet.
Determine the rotation for distance travelled by Josie.
![\begin{gathered} \theta=(s)/(r) \\ =(237)/(29) \\ =468.244^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q32y533me8nwh4deorrxy6c5zuxu3psafh.png)
Determine the vertical distance of Josie.
![\begin{gathered} y=29\cdot\sin (468.244) \\ =29\cdot0.949 \\ =27.54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rzg2t9q98vd4kumm0ir70n6pw3auluwucc.png)
Josie is 27.544 feet above the horizontal.
Part C:
The function for the vertical distance above the horizontal is,
![f(s)=29\sin ((s)/(29))](https://img.qammunity.org/2023/formulas/mathematics/college/2xdlvbnmbekx98m5plidy318p7nz2z2sff.png)
Here angle is in radians.