![\begin{gathered} (-\infty,-4)\cup(7,\infty) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1hhsgjtt07stqtuuw429ol4if833xkxubf.png)
Step-by-step explanation
![(x+4)/(x-7)>0](https://img.qammunity.org/2023/formulas/mathematics/college/55gm442kam509lxghl0xu3r1nqwhfi0nnq.png)
Step 1
Multiply both sides by (x-7)
![\begin{gathered} (x+4)/(x-7)>0 \\ (x+4)/(x-7)\cdot(x-7)>0(x-7) \\ x+4>0 \\ \text{subtract 4 in both sides} \\ x+4-4>0-4 \\ x>-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vmzmbdncsipuz5xuoeaykdsbi9763ey3nj.png)
Check possible critical points.
x=-4
![\begin{gathered} (x+4)/(x-7)>0 \\ (-4+4)/(-4-7)>0 \\ (0)/(-11)>0 \\ 0>0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gsuu92z4smwdfltwtozcltq1vmkdoe7pwm.png)
so, test each interval for a positive or negative result, the divide ths igns
we need a result greater than zero ( so a positive number)
therefore, the answer is
![\begin{gathered} (-\infty,-4)\cup(7,\infty) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1hhsgjtt07stqtuuw429ol4if833xkxubf.png)
I hope this helps you