Solution:
Given:
![\begin{gathered} 8\text{ people eat dinner together} \\ 3\text{ order chicken} \\ 4\text{ order steak} \\ 1\text{ order lobster} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oz9l2tkakgyv5ormmnm1wqsecgjdq4fzcc.png)
Number of ways to order chicken
![\begin{gathered} ^8C_3=(8!)/((8-3)!3!) \\ =(8!)/(5!3!) \\ =(8*7*6*5!)/(5!*3*2*1) \\ =56\text{ ways} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hycmf90wsrgjnljcl9yd3wuwkm0inlfgrs.png)
Number of ways to order steak
![\begin{gathered} ^8C_4=(8!)/((8-4)!4!) \\ =(8!)/(4!4!) \\ =(8*7*6*5*4!)/(4!*4*3*2*1) \\ =70\text{ ways} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6cvi9b3gp19bvsj8lfbfbzk2wg7lkpu72u.png)
Number of ways to order lobster
![\begin{gathered} ^8C_1=(8!)/((8-1)!1!) \\ =(8!)/(7!1!) \\ =(8*7!)/(7!*1) \\ =8\text{ ways} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svyd4ywl7cbvqsr5e05o61ukbv4z26s6fo.png)
Hence, the number of ways one can order 3 chicken, 4 steaks, and 1 lobster is;
![56*70*8=31,360\text{ways}](https://img.qammunity.org/2023/formulas/mathematics/college/3rbp3nydbz3owwcbpy2hcb8fzp0lwl0wi8.png)
Therefore, the number of ways one can order 3 chicken, 4 steaks and 1 lobster is 31,360 ways