221k views
4 votes
Use the power reducing formulas to rewrite the following identity in terms of the first power of cosine

Use the power reducing formulas to rewrite the following identity in terms of the-example-1

1 Answer

1 vote

Step by step explanation:


\sin ^4(2x)=((1-\cos (2\cdot2x))/(2))^2
\sin ^4(2x)=((1-\cos (4x))/(2))^2
\sin ^4(2x)=(1-2\cos(4x)+\cos^2(4x))/(4)
\sin ^4(2x)=(1-2\cos(4x)+(1+\cos(8x))/(2))/(4)
\sin ^4(2x)=((2-4\cos (4x)+1+\cos (8x))/(2))/(4)
\sin ^4(2x)=(3-4\cos (4x)+\cos (8x))/(8)
\sin ^4(2x)=(3)/(8)-(\cos(4x))/(2)+(\cos(8x))/(8)
\sin ^4(2x)=(3)/(8)-(1)/(2)\cos (4x)+(1)/(8)\cos (8x)

User Christian MICHON
by
5.9k points