Given:
Angle of inclination = 5 degrees
Distance = 4,955 feet
Let's find the driver's altitude.
Let's first sketch a figure which represents this situation.
To find the altitude, apply the trigonometric ratio for sin:
![\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/bzzn3f7mj87d6awx4jyitkxgatgeup6pyg.png)
Where:
The opposite side is the altitude
The hypotenuse = 4955 ft.
θ = 5 degrees
Thus, we have:
![\sin 5=\frac{\text{altitude}}{4955}](https://img.qammunity.org/2023/formulas/mathematics/college/2qmbqlvzx0m1iariuthke7h0wmjezw1vxr.png)
Multiply both sides by 4955:
![\begin{gathered} 4955\sin 5=\frac{\text{altitude}}{4955}*4955 \\ \\ 431.9=altitude \\ \\ \text{altitude= 431.9 ft}\approx432\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pzvxaywueplewr2jt8g4hrtih97ewhoy08.png)
Therefore, the dirver's increase in altitude is 432 ft.
ANSWER:
432 feet