Step-by-step explanation
In this question, we have the following information;
r = 0.022% annual rate
k = 12since we’re withdrawing monthly
N = 1515 years
P = $400,000 we are beginning with $400,000
d= regular withdrawal
We would be using the formula for Payout annuity below;
![P=\frac{d\lparen1-\left(1+(r)/(k)\right?^(-Nk)\text{\rparen}}{(r)/(k)}](https://img.qammunity.org/2023/formulas/mathematics/college/omze125ucji7nevyjzhu354jt6ldgm4j1g.png)
Therefore, we have that;
![\begin{gathered} 400000=(d\lparen1-\left(1+(0.02)/(12)\right?^(-15*12)\rparen)/((0.02)/(12)) \\ d\lparen1-\left(1+(0.02)/(12)\right?^(-15*12)\rparen=400000*(0.02)/(12) \\ d=(400000*(0.02)/(12))/(\lparen1-\left(1+(0.02)/(12)\right?^(-15*12)\rparen) \\ d=2574 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7u33mhdi3f5v5cuk312rzrmoabyam85bkn.png)
Answer:$2574
![2574](https://img.qammunity.org/2023/formulas/mathematics/college/k5a00i979osuwozsjhwnvzncw1mlx3hxs3.png)