Let the oak tree population be represented as y.
The rate of population decrease = 8% per year
Since the population continues to decrease at a constant rate, the population size of the oak tree at the end of each year is evaluated as
![\begin{gathered} P(t)=P_0(1-r)^t\text{ ------ equation 1} \\ \text{where} \\ P_0\Rightarrow the\text{ inital poplulation size of the oak trees} \\ t\Rightarrow period,\text{ in years} \\ r\Rightarrow\text{ rate of population decrease} \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8fbvv8pvkt5gb2x1e91875ajvijckeicyi.png)
Thus, when the population reaches half its original value,
![\begin{gathered} P(t)_{}=(y)/(2)\text{ (half the or}iginal\text{ value)} \\ P_0=y\text{ (original value)} \\ r\text{ = 0.08 } \\ t\text{ is the period, which is unknown.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zia86gvdi3ifmvi1v49n62elepgk4up6h7.png)
Substitute the above values in equation 1
![\begin{gathered} (y)/(2)=y(1-0.08)^t \\ (y)/(2)=y*0.92^t \\ \Rightarrow(1)/(2)=0.92^t \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/97u3u4udraol7zt5sy629a0ob1txy5j4um.png)
Take the logarithm of both sides
![\begin{gathered} \log _{}((1)/(2))=log(0.92^t) \\ \Rightarrow\log _{}((1)/(2))=t* log(0.92^{}) \\ -0.30=t*-0.036 \\ -0.30=-0.036t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2ll7s3hzfhkmrbz283z6pgeadb6zqnqhos.png)
Divide both sides by the coefficient of t
![\begin{gathered} \text{the co}efficient\text{ of t is -0.036.} \\ \text{thus,} \\ (-0.30)/(-0.036)=(-0.036t)/(-0.036) \\ \Rightarrow t=8.33 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q1ci9rc7u2hwmeolqym26yg5p1icec70dc.png)
Hence, the population will reach half of its original value in approximately 8.3 years (nearest tenth).