If a point is in the graph of the parabola it needs to satisfy the equation. So we just need to find which values does not satisfy the equation
![(-6)^2+3(-6)-6=12,](https://img.qammunity.org/2023/formulas/mathematics/college/72qmzvgsvec3zsa26btz6rh042uqlqnc4e.png)
then the number A. IS on the graph
![(-4)^2+3(-4)-6=-2,](https://img.qammunity.org/2023/formulas/mathematics/college/pmy8bhdffveomanq2mzojestqalno5p8fa.png)
then the number B. IS on the graph
![(2)^2+3(2)-6=4,](https://img.qammunity.org/2023/formulas/mathematics/college/kqtpy8x7u0hnynkrf5wiifmzuxnxasyqsz.png)
then the number B. IS on the graph, and finally
![(3)^2+3(3)-6=12,](https://img.qammunity.org/2023/formulas/mathematics/college/lygfq4m3uv8iz352o1nekd50n5b6umetq2.png)
since this is diferent from -6, then (3,-6) is NOT on the graph. Then the answer is D. (3,-6)
The point-slope form is
![y-a=m(x-a)](https://img.qammunity.org/2023/formulas/mathematics/college/91oyhjhjoherlt9l6irxldjzc3784nf3d2.png)
we find the slope using the formula
![m=(-1-3)/(6-(-2))=(-4)/(8)=-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/o3h5u2qecn8b9cmodctxzl3zjdhb8jjtov.png)
Replacing this, and the point (-2,3)
![\begin{gathered} y-(-2)=-(1)/(2)(x-3) \\ y+2=-(1)/(2)x+(3)/(2) \\ 2y+2=-x+3 \\ x+2y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/679lwry40ujmb5ibqidsd33j23u82vkug3.png)
The equation of the line is x+2y=1