![1)\text{ }N_t\text{ = 90\lparen}(1)/(2))^{(t)/(17.5)}](https://img.qammunity.org/2023/formulas/mathematics/college/13m5sbf4ii7p51a56kknxrj6qyq1zgnb70.png)
2) 5.625 mg will be left
Step-by-step explanation:
1) Half-life = 17.5 days
initial amount of Arsenic-74 = 90 mg
To get the equation, we will use the equation of half-life:
![\begin{gathered} N_t\text{ = N}_0((1)/(2))^{\frac{t}{t_{(1)/(2)}}} \\ where\text{ N}_t\text{ = amount remaining} \\ N_0\text{ = initial amount} \\ t_{(1)/(2)\text{ }}\text{ = half-life} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fn2d7djcsw0398fti0xc79lf8cnbs7upck.png)
![N_t\text{ = 90\lparen}(1)/(2))^{(t)/(17.5)}](https://img.qammunity.org/2023/formulas/mathematics/college/ibhkedxbwa7ihd8peq8g571r07o6fy2lrc.png)
2) we need to find the remaining amount of Arsenic-74 after 70 days
t = 70
![\begin{gathered} N_t=\text{ 90\lparen}(1)/(2))^{(70)/(17.5)} \\ N_t\text{ = 5.625 mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zb55vgdo2uahs4tm5oo5jzsdtzzhlqo9m9.png)
So after 70 days, 5.625 mg will be left