Given the function:
![h(t)=-4.9t^2+136t+311](https://img.qammunity.org/2023/formulas/mathematics/college/2qsxmenuanow93vzwcey2b87p151lwkulf.png)
Given that NASA launches a rocket at t= 0 seconds.
Where h is the height in meters above sea level.
Let's solve for the following:
• (a). The time the rocket splashes the water.
When the rocket splashes the water, the height above sea-level will be 0 meters.
To solve for t, set h(t) for 0 and solve.
We have:
![-4.9t^2+136t+311=0](https://img.qammunity.org/2023/formulas/mathematics/college/8pzmgk2errapt3qoivqkns4yit5q6i3d0y.png)
Now, let's solve using the quadratic formula:
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/jr19ixi2zltkocy82qhxfiop5lyv4hzbkm.png)
Where:
a = -4.9
b = 136
c = 311
Plug in the values into the formula and solve for t:
![\begin{gathered} t=(-136\pm√(136^2-4(-4.9)(311)))/(2(-4.9)) \\ \\ t=(-136\pm√(18496-(-6095.6)))/(-9.8) \\ \\ t=(-136\pm√(18496+6095.6))/(-9.8) \\ \\ t=(-136\pm√(24591.6))/(-9.8) \\ \\ t=(-136\pm156.82)/(-9.8) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h49bkd477shmca0265mdn0qd6fkxtahtbp.png)
Solving further:
![\begin{gathered} t=(-136-156.82)/(-9.8),(-136+156.82)/(-9.8) \\ \\ t=(−292.82)/(-9.8),(20.82)/(-9.8) \\ \\ t=29.88,-2.12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l35ykj3dudl49p8oh0dd3cv3c1gv8by9ab.png)
Thus, we have the solutions:
t = 29.88 and t = -2.12
Since the time cannot be negative, let's take the positive solution.
Therefore, the rocket splashes down after 29.88 seconds.
• (b). Let's find the peak.
To find the maximum time, apply the fomula:
![t=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kqgfahbeglpjofn19o9xpwihjq2zz10tr8.png)
Thus, we have:
![\begin{gathered} t=-(136)/(2(-4.9)) \\ \\ t=-(136)/(-9.8) \\ \\ t=(136)/(9.8) \\ \\ t=13.88 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/afr1jl5rexneqj0p3e5c2nycadmnd6oxdz.png)
The rocket gets to its peak at 13.88 seconds.
Now, to find the height at that time, substitute 13.88 for t in h(t) and solve for h(13.88):
![\begin{gathered} h(13.88)=-4.9(13.88)^2+136(13.88)+311 \\ \\ h(13.88)=-944.01+1887.35+311 \\ \\ h(13.88)=1254.67\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/brx6q7sdd4gb8m44b5bnrwwxezvynot39f.png)
Therefore, the rocket peaks at 1254.67 above seal level.
ANSWER:
• 29.88 seconds
• 1254.67 meters