Given:
The line passing through the points (1,5) and (-5,2).
![\begin{gathered} (x1,y1)=(1,5) \\ (x2,y2)=(-5,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l5sqktc6cqg7uitup5pqi5fq5fapyc234q.png)
Required:
To find the equation of line, x- and y-intercepts.
Step-by-step explanation:
The general form of line equation is
![y-y1=m(x-x1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w8833wq43gzv073odoa76ku9bunhdf4cj7.png)
Here
![y-5=m(x-1)](https://img.qammunity.org/2023/formulas/mathematics/college/5veq4pglcjzdo46rtbqotovep2nszvik17.png)
Where m is the slope.
![\begin{gathered} m=(y2-y1)/(x2-x1) \\ \\ =(2-5)/(-5-1) \\ \\ =(-3)/(-6) \\ \\ =(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rzs8pgr3cs6o6dvteaaxj2g7vtz423q6gz.png)
Therefore the equation of line is
![\begin{gathered} y-5=(1)/(2)(x-1) \\ \\ y=(1)/(2)x-(1)/(2)+5 \\ \\ y=(1)/(2)x+(9)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kq91j0twg6xfdynx61yizhrfzdaulxi69r.png)
Here the x-intercept is
![\begin{gathered} 0=(1)/(2)x+(9)/(2) \\ \\ (1)/(2)x+(9)/(2)=0 \\ \\ (1)/(2)x=-(9)/(2) \\ \\ x=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ylkm1qx1azpwfi8tsy66ls4amgr3db32ul.png)
And the y-intercept is,
![\begin{gathered} y=0+(9)/(2) \\ \\ y=(9)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ia22glk9728vfnj60ewm5vz0oom5fpg2a.png)
Final Answer:
The line equation is :
![y=(1)/(2)x+(9)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/sidcoe7w2l030hpyxizvf8z0ch33iqaaim.png)
The x-intercept is :( -9,0)
The y-intercept is : (0,9/2)