69,042 views
25 votes
25 votes
Find g(x) if the indefinite integral of f(x) need little help

Find g(x) if the indefinite integral of f(x) need little help-example-1
User ErikH
by
2.2k points

1 Answer

23 votes
23 votes

Answer:

g(x) = 4x² - x

General Formulas and Concepts:

Algebra II

Functions

  • Function Notation
  • Piecewise Functions

Calculus

Integration

  • Integrals
  • Integral Notation
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

*Note:

Integrating a piecewise function requires you to integrate both parts.

Step 1: Define

Identify.


\displaystyle f(x) = \left \{ {{8x - 1 ,\ x \leq 4} \atop {31 ,\ x \geq 4}} \right.


\displaystyle \int {f(x)} \, dx = \left \{ {{g(x) + C ,\ x \leq 4} \atop {31x + C ,\ x \geq 4}} \right.

Step 2: Find function g(x)

We can see that the 2nd part of the piecewise function already has been integrated:

  1. [Integral] Set up:
    \displaystyle \int {f(x)} \, dx ,\ x \geq 4 = \int {31} \, dx ,\ x \geq 4
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {f(x)} \, dx ,\ x \geq 4 = 31 \int {} \, dx ,\ x \geq 4
  3. [Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle \int {f(x)} \, dx ,\ x \geq 4 = 31x + C ,\ x \geq 4

To find function g(x), we simply have the same setup:

  1. [Integral] Set up:
    \displaystyle \int {f(x)} \, dx ,\ x \leq 4 = \int {8x - 1} \, dx ,\ x \leq 4
  2. [Integral] Rewrite [Integration Rule - Addition/Subtraction]:
    \displaystyle \int {f(x)} \, dx ,\ x \leq 4 = \int {8x} \, dx - \int {1} \, dx ,\ x \leq 4
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {f(x)} \, dx ,\ x \leq 4 = 8 \int {x} \, dx - \int {} \, dx ,\ x \leq 4
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle \int {f(x)} \, dx ,\ x \leq 4 = 8 \bigg( (x^2)/(2) \bigg) - x + C ,\ x \leq 4
  5. Simplify:
    \displaystyle \int {f(x)} \, dx ,\ x \leq 4 = 4x^2 - x + C ,\ x \leq 4
  6. Redefine:
    \displaystyle g(x) = 4x^2 - x + C ,\ x \leq 4

The integration constant C is already included in the answer, so our answer is g(x) = 4x² - x.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration (Applications)

User Pierre Prinetti
by
2.8k points