Solution
From the given figure
Let x represent the cross section of the package
Let y represent the length of the package
The formula for the volume, V, of the package (a cubiod) is
![\begin{gathered} V=\text{LBH} \\ L\text{ is the length} \\ B\text{ is the breadth} \\ H\text{ is the height} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3hz1rnjkj5snxkufpb21nr2bhw0msmp5kx.png)
And
![\begin{gathered} L=y \\ B=x \\ H=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e4ezdqw24c95apkksxbc6rp2kgzxrj7bu5.png)
Substitute for the variables into the formula above
![\begin{gathered} V=y* x* x=x^2y \\ V=x^2y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d27e5cu3ws325d2692lnht5kpu8k2m5gpb.png)
For the perimeter of the crossection
![\begin{gathered} P=x+x+x+x+y=4x+y \\ P=4x+y \\ \text{Where P}=114 \\ 114=4x+y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9iy8xrq5cg7165iinu2i8okxyt4zq3z8dc.png)
Make y the subject
![\begin{gathered} 114=4x+y \\ y=114-4x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hiihp96mcx0srd3gu3aka7rm6nyfexsd6q.png)
Substitute for y into the Volume, V.
![\begin{gathered} V=x^2y \\ V=x^2(114-4x) \\ V=114x^2-4x^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0sik54q7m833wq221nze6s2mhpo7fq1n5.png)
Differentiating the above expression gives
![V^(\prime)=228x-12x^2](https://img.qammunity.org/2023/formulas/mathematics/college/3si8n6glmx0uwlctl4lchqgr0jmi04g5ra.png)
Where V' = 0
![\begin{gathered} 228x-12x^2=0 \\ Divide\text{ both sides by 12} \\ 19x^{}-x^2=0 \\ x(19-x)=0 \\ x=0 \\ 19-x=0 \\ x=19 \\ x=0\text{ or 19} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yx62a8e0t7tmbt1nytfdo0xdsw7gbc4mt4.png)
Since x can't be negative, thus, x is 19 inches
Recall that
![\begin{gathered} y=114-4x \\ \text{Where x}=19 \\ y=114-4(19) \\ y=114-76 \\ y=38 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ifmhh694al9uy953stei94n974bwdqvahg.png)
Hence,