Answer:
24,000 letters.
Step-by-step explanation:
In 60 minutes, 4 postal clerks sort 1,200 letters.
![\begin{gathered} 4\text{ clerks sort 1200 letters} \\ \implies1\text{ clerk sorts }\frac{\text{1200}}{4}\text{ = 300 letters per hour} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c0ugn4h1lxc2pw8k1ykn9dkm508g8aln6n.png)
Since 1 clerk sorts 300 letters in 1 hour (i.e. 60 minutes):
![\begin{gathered} \text{In 8 hours, the number of letters sorted by 1 clerk = }(8*300) \\ \implies\text{The number of letters sorted by 10 clerks}=10*(8*300) \\ =24,000\text{ letters} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6hlw6yzkpv2hkke21918r9bsijs7235vhz.png)
Thus, in 8 hours, 10 clerks will sort 24,000 letters.
Alternate Approach
60 minutes = 1 hour
• In 1 hour, 4 postal clerks sort 1200 letters.
,
• In 1 hour, 10 postal clerks sorts x letters.
Expressing this as a ratio:
![\begin{gathered} (1200)/(4)=(x)/(10) \\ 4x=12000 \\ x=(12000)/(4) \\ x=3,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h3bv1lhkaq3ngk9mkbojoa31brdt9wu9cd.png)
Thus, in 1 hour, 10 postal clerks will sort 3,000 letters.
Therefore, the number of letters 10 postal clerks will sort in 10 hours will be:
![\begin{gathered} 3000*8 \\ =24,000\text{ letters} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xikcq9ryn4up57d21pi3hxcm1e0ijam4w1.png)
Thus, in 8 hours, 10 clerks will sort 24,000 letters.