SOLUTION:
Step 1 :
In this question, we are told that a marketing research company needs to estimate the average total compensation of CEOs in the service industry.
We also have that: Data were randomly collected from 38 CEOs and the 98% confidence interval was calculated to be ($2,181,260, $5,836,180).
Then, we are asked to find the margin error for the confidence interval.
Step 2:
We need to recall that:
![\text{Higher Confidence Interval, CI}_{H\text{ = }}X\text{ + }\frac{Z\sigma}{\sqrt[]{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/2kdw8hjfye8hvnil8v7ohzxmxg4fqkr2k3.png)
![\text{Lower Confidence Interval , CI}_{L\text{ }}=\text{ X - }\frac{Z\sigma}{\sqrt[]{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/wzg49e2n38isczm25o9fyhqkixzh5ol1uq.png)
It means that:
![\vec{}X\text{ = }\frac{CI_{H\text{ }}+CI_L}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/83leghhhrat0ve7lbe9tpgi1h4ndzs2nz1.png)
![\text{Margin of error, }\frac{Z\sigma}{\sqrt[]{n}\text{ }}\text{ = }\frac{CI_{H\text{ - }}CI_L}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/a8d5a942ykvvromtb2una2xdyn7cv7lqed.png)
where,
![CI_H\text{ = }$$5,836,180$\text{ }$$$](https://img.qammunity.org/2023/formulas/mathematics/college/6riryjh09vqziv69ck5sz1j8f3bleb92en.png)
![CI_{L\text{ }}=\text{ }2,181,260](https://img.qammunity.org/2023/formulas/mathematics/college/7ss83v0cpku534nredainsmwy386hyv2je.png)
putting the values into the equation for the margin of error, we have that:
![\text{Margin of error,}\frac{Z\sigma}{\sqrt[]{n}\text{ }}\text{ = }\frac{5,836,180\text{ - }2,181,260\text{ }}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/v67zypp0u9kyeqhef5geebwp0u7ki8p3k8.png)
![\begin{gathered} =\text{ }(3654920)/(2) \\ =1,\text{ 827, 460} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1d2xgu00nueyyqvuu439xf0amxjf2o43sy.png)
CONCLUSION:
The margin error for the confidence interval is 1, 827, 460