101,573 views
26 votes
26 votes
Given the curve
\displaystyle \large{y=e^(-x)\sin x \ \ (x\geq 0) let the area enclosed by the curve and the x-axis (above the x-axis) be S0, S1, S2, ... , Sn, ... in order from y-axis. Find
\displaystyle \large{ \lim_(n \to \infty) \sum_(k=0)^(n) S_k}

User Mohmmed Ali
by
2.4k points

1 Answer

26 votes
26 votes

The given curve crosses the x-axis whenever x is a multiple of π, and it lies above the x-axis between consecutive even and odd multiples of π. So the regions with area S₀, S₁, S₂, ... are the sets


R_0 = \left\{(x, y) : 0 \le x \le \pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}


R_1 = \left\{(x, y) : 2\pi \le x \le 3\pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}


R_2 = \left\{(x, y) : 4\pi \le x \le 5\pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}

and so on, with


R_k = \left\{(x, y) : 2k\pi \le x \le (2k+1)\pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}

for natural number k.

The areas themselves are then given by the integral


S_k = \displaystyle \int_(2k\pi)^((2k+1)\pi) \int_0^{e^(-x)\sin(x)} dy \, dx = \int_(2k\pi)^((2k+1)\pi) e^(-x)\sin(x) \, dx

Integrate by parts twice. Take


u = e^(-x) \implies du = -e^(-x) \, dx


dv = \sin(x) \, dx \implies v = -\cos(x)

so that


\displaystyle \int e^(-x)\sin(x) \, dx = -e^(-x)\cos(x) - \int e^(-x)\cos(x) \, dx

then


u = e^(-x) \implies du = -e^(-x) \, dx


dv = \cos(x) \, dx \implies v = \sin(x)

so that


\displaystyle \int e^(-x)\cos(x) \, dx = e^(-x)\sin(x) + \int e^(-x)\sin(x) \, dx

Overall, we find


\displaystyle \int e^(-x)\sin(x) \, dx = -e^(-x)\cos(x) - e^(-x)\sin(x) - \int e^(-x)\sin(x) \, dx

or


\displaystyle \int e^(-x)\sin(x) \, dx = -\frac12 e^(-x) (\cos(x)+\sin(x)) + C

Using the antiderivative and the fundamental theorem of calculus, we compute the k-th area to be


\displaystyle S_k = -\frac12 e^(-(2k+1)\pi) (\cos((2k+1)\pi)+\sin((2k+1)\pi)) + \frac12 e^(-2k\pi) (\cos(2k\pi)+\sin(2k\pi))


\displaystyle S_k = \frac12 e^(-2k\pi) \cos(2k\pi) \left(e^(-\pi) + 1\right)


\displaystyle S_k = \frac{e^(-\pi)+1}2 e^(-2k\pi)

Since
\left|e^(-2\pi)\right|<1, the sum we want is a convergent geometric sum. As n goes to ∞, we have


\displaystyle \lim_(n\to\infty) \sum_(k=0)^n S_k = \frac{e^(-\pi)+1}2 \cdot \frac1{1 - e^(-2\pi)} = \boxed{(e^\pi+1)/(4\sinh(\pi))}

User Aswathy
by
2.8k points