We know that diagonals bisect the angles because the figure is a rhombus. Also, the diagonals bisect each other at right angles.
We can find AMB using the diagonal property because AMB is a right angle, that is, it's equal to 90°.
![m\angle AMB=90](https://img.qammunity.org/2023/formulas/mathematics/college/qkczhj75lvgdspngan6n7o9lv814vts2s0.png)
Let's find angle ABM using the interior angles theorem on the triangle AMB.
![\begin{gathered} 53+90+m\angle ABM=180 \\ m\angle ABM=180-90-53=37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1kcsje2xmkdwpa1vak397muyqo5k86b1po.png)
Given that diagonals bisect each other, then DM = BM = 6. And, MC = 12.-
Using the tangent function in triangle BMC to find angle MBC
![\begin{gathered} \tan (\angle MBC)=(12)/(16) \\ m\angle MBC=\tan ^(-1)((3)/(4))\approx37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t65ee16bk0bw7idxvl1mll5a4gbxiouzms.png)
So, using the sum of angles, we have
![m\angle ABC=m\angle ABM+m\angle MBC=37+37=74](https://img.qammunity.org/2023/formulas/mathematics/college/8nja4tlxpg8fus0aswyxuausy6gjbf159n.png)
And the measure of angle DAB is
![undefined]()