∵ The form of the equation of the parabola is
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
∵ The points (1, 6), (2, 20), and (3, 40) lie on it
∴ x1 = 1 and y1 = 6, x2 = 2 and y2 = 20, x3 = 3 and y3 = 40
→ Substitute these values in the equation above to make 3 equations and solve
them together to find the values of a, b, and c
![\begin{gathered} 6=a(1)^2+b(1)+c \\ 6=a+b+c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/klfed9ciu3btd19ml49luphxg99xoej4i2.png)
∴ a + b + c = 6 ====== (1)
![\begin{gathered} 20=a(2)^2+b(2)+c \\ 20=4a+2b+c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x7ro8qkyhd0izks1rlxr2c6klvfyrk4ca4.png)
∴ 4a + 2b + c = 20 ===== (2)
![\begin{gathered} 40=a(3)^2+b(3)+c \\ 40=9a+3b+c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o5yx9zrvgabs4p8ss2wbwefwliqehwksdo.png)
∴ 9a + 3b + c = 40 ===== (3)
Now we will solve the 3 equations to find a, b, and c
We can do that using the calculator or manual
By using the calculator
∴ a = 3, b = 5, and c = -2
Let us substitute them in the form of the equation above
![\begin{gathered} y=3x^2+5x+(-2) \\ y=3x^2+5x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9h7tmkww95xgakxt8g51ix7llfzdlz5g9r.png)