The formula to calculate the confidence interval is
![P\pm z*\sqrt[]{(P(1-P))/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/hfz92vfyi97g4ss6de7ijdcw0uckuoy8rc.png)
Where
![\begin{gathered} P=\text{ sample proportion} \\ n=sample\text{ size} \\ z=\text{ z-score} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q8ux9bletjqm8ghup5guulanj85hkkmrgu.png)
We can calculate the sample proportion by
![\begin{gathered} P=(x)/(n) \\ \text{Where x is the successes} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7vdsn7g8hutg9o2tvqulc5nz5fh8yb471i.png)
The parameters are
![\begin{gathered} x=279 \\ n=420 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ezfimwk5urzbqf8c1tdzvtnhjo1hx2yns.png)
Using an online calculator, the z-score for a 90% confidence interval is 1.645.
Therefore, we can calculate P to be:
![P=(279)/(420)=0.6643](https://img.qammunity.org/2023/formulas/mathematics/college/fyq5tjrab8orhnxfjdc8g1m1r9hptbl2if.png)
Hence, we can calculate calculate the confidence interval by substituting the values
![\begin{gathered} =0.6643\pm1.645\sqrt[]{(0.6643(1-0.6643))/(420)} \\ =0.6643\pm1.645(0.023) \\ =0.6643\pm0.0378 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/efh7lg667l0kzz4zxioy43bqvqryft8f0g.png)
Therefore, the lower limit of the confidence interval is
![\begin{gathered} =1.645-0.0378 \\ =1.6072 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ehp2m2tntkjbizglflb6iqe63ac06deeg7.png)
The lower limit of the confidence interval is 1.6072
Therefore, the upper limit of the confidence interval is
![\begin{gathered} =1.645+0.0378 \\ =1.6828 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/br9jj61fekg12jyovqkrqqry62knhptjyd.png)
Therefore, the upper limit of the confidence interval is 1.6828