Using the center and a scale factor of 3/2, we can say that the length A'B' will be
![A^(\prime)B^(\prime)=f\cdot AB](https://img.qammunity.org/2023/formulas/mathematics/college/wv1zs985l725n9xqx1xfr753b4bxrhsduz.png)
Where f is the scale factor, then
![\begin{gathered} A^(\prime)B^(\prime)=(3)/(2)\cdot4 \\ \\ A^(\prime)B^(\prime)=3\cdot2 \\ \\ A^(\prime)B^(\prime)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mllhh6dh9p3yjmyncfm83xjcnjcgxk2bzy.png)
The length of A'B' is 6 units.
One of the properties of dilations is that the angles are always the same. Therefore the angle B' is the same angle as B.