The Vertex of a Parabola
Given a function of the form:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/college/gtwfur36jgufas40j4egf3v22iz0dzre6e.png)
Its graph has a shape known as a parabola. The vertex of a parabola is the point of its maximum or minimum value.
The x-coordinate of the vertex is given by:
![x_v=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/kcg8jhoehgrq4behgg4ohzwd4mmzcllet7.png)
Given the function:
![f(x)=x^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/college/kcsjhck85njwv3lmkspd6etcr36j3uirns.png)
It's evident that a =1, but we don't have b or c.
Calculating xv:
![x_v=-(b)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/1c9zwoytrewnhhpm4ps8rjsk8p19ouwctp.png)
We are given this value is -5, thus:
![\begin{gathered} -(b)/(2)=-5 \\ \text{Solving for b:} \\ b=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7im243lcectsrb8wb9j0hsw5gnmaz3qabf.png)
Substitute the value of b in the function:
![y=x^2+10x+c](https://img.qammunity.org/2023/formulas/mathematics/college/rd8q0st90kewtllf0y9xghfcr91k0arm2z.png)
We are also given the value of y = 6 when x=-5. Substituting:
![6=(-5)^2+10(-5)+c](https://img.qammunity.org/2023/formulas/mathematics/college/1adob6jks2lxm4o8k8fircqkp2pb2aq000.png)
Operating:
![\begin{gathered} 6=25-50+c \\ 6=-25+c \\ c=31 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xxxum0ly3jtt6vxxqu3j8t70bfuysyn9dd.png)
The required coefficients are b = 10 and c = 31