119k views
0 votes
Use the properties of logarithms to match the condensed forms with their expanded form.Find:log(c/d)log(a^b)log(ab)

Use the properties of logarithms to match the condensed forms with their expanded-example-1
User Eldshe
by
4.6k points

1 Answer

4 votes
Step-by-step explanation:

Applying Properties of logarithms, we get:


\log_((c)/(d))=\text{ }\log_(c)\text{ - }\log_(d)
\log_(a^b)=\text{ b}\log_(a)

and


\log_(a\cdot b)=\text{ }\log_(a)\cdot\text{ }\log_{\text{ }}\text{ \lparen}b)

then, we can conclude that the correct answer is:

Answer:


\log_\text{ \lparen}(c)/(d))=\text{ }\log_{\text{ }}\text{ \lparen}c)\text{ - }\log_{\text{ }}\text{ \lparen}d)
\log_{\text{ }}\text{ \lparen}a^b)=\text{ b}\log_{\text{ }}\text{ \lparen}a)


\log_(a\cdot b)=\text{ }\log_(a)\cdot\text{ }\log_{\text{ }}\text{ \lparen}b)

User Sergio Romero
by
4.9k points