Given the following parameters
![\begin{gathered} \mu=0 \\ \sigma=1 \\ x=-1.91 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/57h6kt2iyu2xftvk0c9stibyhbsyrubshn.png)
The z-score formula is given below
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
Calculate the z-score value using the above formula by substituting the parameters above
![z=(-1.91-0)/(1)=(-1.91)/(1)=-1.91](https://img.qammunity.org/2023/formulas/mathematics/college/2l0appi5e3becqgkbp2g2nghu4otj2enmo.png)
The probability that the score is less than -1.91 can be diagramatically represented as
The probability can calculated as;
[tex]\begin{gathered} Pr(z<-1.91)\Rightarrow Pr(0\le z)-Pr(0
Hence, the probability that a given score is less than -1.91 is 0.0281