Given:
![f(x)=x^3-8x+32](https://img.qammunity.org/2023/formulas/mathematics/college/7pjhz8h4x10lzlvjw8wfczr4yl684muvmt.png)
The zero is (2-2i).
Required:
We need to find the zeros of the given function f(x).
Step-by-step explanation:
The zeros of the function f(x) is 2-2i.
Use the synthetic method.
The given f(x) can be written as follows.
![x^3-8x+32=(x-(2-2i))(x^2+(2-2i)x+(-8+(2-2i)^2))](https://img.qammunity.org/2023/formulas/mathematics/college/u8u51ucbtjh9hwuyjwq5ank567vmg83x0q.png)
![=(x-(2-2i))(x^2+(2-2i)x+(-8+4-8i-4))](https://img.qammunity.org/2023/formulas/mathematics/college/e1nlk31lz7j0mj2e7ujwn5o9ja9qqtz6ef.png)
![=(x-(2-2i))(x^2+(2-2i)x+(-8-8i))](https://img.qammunity.org/2023/formulas/mathematics/college/b2eu9o7y4qert1a3kvo12yfe5rbu7yu8mz.png)
![Use\text{ \lparen2-2i\rparen x=\lparen-2-2i\rparen x+4x}](https://img.qammunity.org/2023/formulas/mathematics/college/jd9llxb8vz87w41r702xpg491xv6ziultd.png)
![=(x-(2-2i))(x^2+(-2-2i)x+4x+(-8-8i))](https://img.qammunity.org/2023/formulas/mathematics/college/85hal008fv8g92peqm9sbukly5cut41ps1.png)
![=(x-(2-2i))(x(x+(-2-2i))+4(x+(-2-2i)))](https://img.qammunity.org/2023/formulas/mathematics/college/u2d5byljl55bs3nhpl4x9v8tp23zwavxk4.png)
![=(x-(2-2i))(x+(-2-2i))(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/auadozrabfzyrzjxukqidi69szc5th4242.png)
![=(x-(2-2i))(x-(2+2i))(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/w6ljlk2fwwagxk8kco12zyry70dbugo5ik.png)
![=(x-(2-2i))(x-(2+2i))(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/31ct6j5px7t9tev8kmszf19vpyun56uhvj.png)
The zeros of the function f(x) are (2-2i), (2+2i), and (-4).
Final answer:
![(2+2i),-4.](https://img.qammunity.org/2023/formulas/mathematics/college/gb89abthydm9mjgyfhwfe7av1rjx0cgvok.png)