Answer:
K'(-3, 6)
Explanation:
From the graph, the coordinates of G, H, and K are: G(1,3), H(6,0), and K(6,3).
If a point (x,y) is rotated 90 degrees counterclockwise about the origin, the transformation rule is:
![(x,y)\to(-y,x)](https://img.qammunity.org/2023/formulas/mathematics/college/fqhu8pa37kscp70i0qfsb2lfhu9sqa7r9r.png)
Thus, the coordinates of the image points of the triangle GHK are:
![\begin{gathered} G(1,3)\to G^(\prime)(-3,1) \\ H(6,0)\to H^(\prime)(0,6) \\ K(6,3)\to K^(\prime)(-3,6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/88bknd342fl5cqk9brkbsvlg0fn03s41w8.png)
The coordinates of the image of the point K is (-3,6).