The Solution:
Let the first mechanic rate per hour be x and the second mechanic rate per hour be y.
Representing the given problem in equations, we have:
![\begin{gathered} 20x+5y=1800\ldots\text{eqn}(1) \\ x+y=165\ldots\text{eqn}(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s3y3qraudxntpz510kj3cb0003o7b58of3.png)
We are asked to find the values of x and y.
Step 1:
From eqn(2), find y.
![y=165-x\ldots\text{eqn}(3)](https://img.qammunity.org/2023/formulas/mathematics/college/s1g0cssih4xaimnoozdmvhryiomu9zf6j7.png)
Step 2:
putting eqn(3) into eqn(1), we get
![20x+5(165-x)=1800](https://img.qammunity.org/2023/formulas/mathematics/college/gulw801x4gxilwvjdlggicnay156hvz26n.png)
Simplifying, we get
![20x+825-5x=1800_{}](https://img.qammunity.org/2023/formulas/mathematics/college/avq7awrh2a4kq8gygnppn9byddew4hshig.png)
Collecting the like terms, we get
![\begin{gathered} 20x-5x=1800-825 \\ 15x=975 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7txetjt8d4ysm73n06mn5bwi0stsmx8m89.png)
Dividing both sides by 15, we get
![x=(975)/(15)=65=\text{ \$65}](https://img.qammunity.org/2023/formulas/mathematics/college/4rr7k8stchtie0v9cibxyzb98lue3fw1l6.png)
Step 3:
Substituting 65 for x in eqn(3), we get
![\begin{gathered} y=165-65 \\ y=100=\text{ \$100} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g5yrz6oy1xcct14q8y2zzudzl1o3a9qn7c.png)
Therefore, the correct answers are:
The first mechanic charges $65 per hour.
The second mechanic charges $100 per hour.