Given the points
W ( -2 , 1 ) , X ( -1 , 3 ) , Y ( 3 , 1 ) and Z ( 2 , -1 )
The distance formula is ;
![\sqrt[]{(x2-x1)^2+(y2-y1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/lv29jygnvr92r2akqmo57wrhy4130lwc7w.png)
So, we will find the distances WX , XY , YZ and ZX
![\begin{gathered} WX=\sqrt[]{(-2-(-1)^2+(1-3)^2}=\sqrt[]{1+4}=\sqrt[]{5} \\ XY=\sqrt[]{(-1-3)^2+(3-1)^2}=\sqrt[]{16+4}=\sqrt[]{20} \\ YZ=\sqrt[]{(3-2)^2+(1-(-1))^2}=\sqrt[]{1+4}=\sqrt[]{5} \\ ZX=\sqrt[]{(2-(-2))^2+(-1-1)^2}=\sqrt[]{16+4}=\sqrt[]{20} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hxg0a2von4l6z71j3ufnsps7ndpf2ztl7c.png)
so, WX = YZ = √5
And XY = ZX = √20
so, WXYZ is rectangle provided that WX is perpendicular to XY
See the following image
The answer is yes