Final answer:
The expression (5 - 4x3)(5 + 4x3) can be simplified using the difference of squares identity, which results in 25 - 16x6.
Step-by-step explanation:
Using Polynomial Identities to Multiply
To multiply the expression (5 - 4x3)(5 + 4x3), we can apply the difference of squares identity, which states that (a - b)(a + b) = a2 - b2. Applying this identity to our expression, where a = 5 and b = 4x3, gives us:
52 - (4x3)2
25 - 16x6
The difference of squares identity is therefore the identity used to simplify this polynomial multiplication.