Answers:
- <-6,8>
- <-3,3>
- <12,12>
- <21,4>
- <18,22>
- <17,30>
- <-36,-38>
- <16,20>
===========================================================
Work Shown:
Problem 1
u = <-3,4>
2u = 2*<-3,4>
2u = <2(-3), 2(4)>
2u = <-6,8>
Effectively, we multiplied each coordinate by 2.
-----------------
Problem 2
g = <-1,1>
3g = 3*<-1,1>
3g = <3(-1),3(1)>
3g = <-3,3>
Same idea as problem 1, but we tripled each coordinate.
-----------------
Problem 3
z = <-3,-3>
-4z = -4*<-3,-3>
-4z = <-4(-3),-4(-3)>
-4z = <12,12>
-----------------
Problem 4
v = <6,8>
2v = <12,16> .... double both coordinates
u = <-3,4>
3u = <-9,12> .... triple both coordinates
2v-3u = <12,16>-<-9,12>
2v-3u = <12-(-9),16-12>
2v-3u = <12+9,16-12>
2v-3u = <21,4>
I subtracted the corresponding coordinates.
The general rule is <a,b>-<c,d> = <a-c,b-d>
-----------------
Problem 5
y = <1,1>
6y = <6,6> .... multiply each coordinate by 6
v = <6,8>
2v = <12,16>
6y+2v = <6,6>+<12,16> = <6+12,6+16> = <18,22>
This time we add the corresponding coordinates after scaling up the given vectors.
The general rule is <a,b>+<c,d> = <a+c,b+d>
-----------------
Problem 6
u = <-3,4>
v = <6,8>
3v = <18,24>
y = <1,1>
2y = <2,2>
u+3v+2y = <-3,4>+<18,24>+<2,2>
u+3v+2y = <-3+18+2,4+24+2>
u+3v+2y = <17,30>
-----------------
Problem 7
g = <-1,1>
4g = <-4,4>
y = <1,1>
A = 4g+y = <-4,4>+<1,1> = <-4+1,4+1> = <-3,5>
z = <-3,-3>
v = <6,8>
5v = <30,40>
B = z-5v = <-3,-3> - <30,40> = <-3-30,-3-40> = <-33,-43>
A+B = <-3,5>+<-33,-43> = <-36,-38>
-----------------
Problem 8
u = <-3,4>
v = <6,8>
2v = <12,16>
A = u+2v = <-3,4>+<12,16> = <-3+12,4+16> = <9,20>
w = <8,-1>
g = <-1,1>
B = w+g = <8,-1>+<-1,1> = <8+(-1),-1+1> = <7,0>
A+B = <9,20>+<7,0> = <9+7,20+0> = <16,20>