Answer:
![CI\text{ = 59 }\pm\text{ 3.35 ounces}](https://img.qammunity.org/2023/formulas/mathematics/college/uh5x8b7qvoiy8evu3xvbwl94rt1t2pniqu.png)
Step-by-step explanation:
Given:
number of turtles = 42
mean weight = 59 ounces
Population standard deviation = 13.2 ounces
To find:
To construct a 90% confidence interval for the true population mean
To get the confidence interval, we will apply the formula:
![\begin{gathered} CI\text{ = mean }\pm\text{ Z}_{90\text{ \%}}*(\sigma)/(√(n)) \\ \sigma\text{ = standard deviation} \\ n\text{ = number of sample} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uf7mfgwwhf13a8xpo7tonls15yu75brgyc.png)
Z score for 90% confidence interval = 1.645
![\begin{gathered} CI\text{ = 59 }\pm1.645*(13.2)/(√(42)) \\ \\ CI\text{ = 59 }\pm\text{ 1.645\lparen2.0368\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y0t5yi9k7a7peznr0r9lvmvnjsnqx3mjk4.png)
![\begin{gathered} CI\text{ = 59 }\pm\text{ 3.350536} \\ \\ CI\text{ = 59 }\pm\text{ 3.35 ounces \lparen2 decimal place\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2uy94t649ncw2a2inzkkge26nkhtq8146p.png)