Volume V is inversely proportional to temperature T, when pressure is constant, then:
![V\propto(1)/(T)](https://img.qammunity.org/2023/formulas/mathematics/college/hprm29fvbuc8jthxhrsal7embhr0ge3u06.png)
So, for a constant pressure P, we can create the following formula
![V=(P)/(T)\Rightarrow VT=P](https://img.qammunity.org/2023/formulas/mathematics/college/xzrt1j3vajutf5c2zlqxeh1lumm91xw1e3.png)
* If the temperature is 50 degrees, the volume is 20 cubic feet. What will the volume be when the temperature is 100 degrees.
Since P is mantain constant, then
![\begin{gathered} P=V_1T_1=V_2T_2 \\ \Rightarrow V_2=(V_1T_1)/(T_2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/52vwace7sw8hppzp9zjvkudd6pxd4g80kn.png)
Where, the variables are:
V1 is the initial volume = 20 cubic feet
T1 is the initial temperatura = 50 degrees
V2 is the final volume in cubic feet
T2 is the final temperature = 100 degrees
Now, let's replace into the equation
![V_2=(20\cdot50)/(100)=(1000)/(100)=10](https://img.qammunity.org/2023/formulas/mathematics/college/ph2b8vjvxmu3o62k0te9j6htdz9gmout6a.png)
Thus, the solution is 10 cubic feet