Given:
The exponential function,
![y=ab^x+c](https://img.qammunity.org/2023/formulas/mathematics/college/z4pmk01665n58wgeb7mbqhygawhce4p2ie.png)
It passes through the points (0, 5) and (1, 14) and has a horizontal asymptote at y=2.
To find f(3):
Let us first find the values of a, b and c.
As we know, A function of the form
![f\mleft(x\mright)=a(b^x)+c](https://img.qammunity.org/2023/formulas/mathematics/college/od2gn5vmzquelp9rl9ffbg4bh2n0d9tbio.png)
it always has a horizontal asymptote at y = c
So, substitute the point (0,5) and c = 2.
We get
![\begin{gathered} 5=ab^0+2 \\ 5=a+2 \\ a=3\ldots\ldots\ldots(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/11crs3f9h79w10ucc34sv5iu7clvoy7jv8.png)
Substitute the point (1, 14), a=3 and c=2, we get
![\begin{gathered} 14=3(b^1)+2 \\ 3b=12 \\ b=4\ldots\ldots\ldots(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sjm09ikivrgnlcyhzfjkd8bo1np55qt6uk.png)
So, the given equation becomes,
![f(x)=3(4^x)+2](https://img.qammunity.org/2023/formulas/mathematics/college/d3flvyydhibyf8uuwf3yf2xrexkie9y83k.png)
Next, substitute x=3, we get
![\begin{gathered} f(3)=3(4^3_{})+2 \\ =3(64)+2 \\ =192+2 \\ f(3)=194 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hjv13ml4kg42aqqhysp1q6p6pje0ayrt7c.png)
Hence, the solution is 194.