Given:
There are given that the triangle ABC.
Where,
The length of the side AC is 13.
The length of the side AB is 23.
The length of the side BC is 11.
Step-by-step explanation:
To find the angle B, we need to use the cosine rule:
Then,
From the formula of the cosine rule:
![b^2=a^2+c^2-2ac\text{ }cosB](https://img.qammunity.org/2023/formulas/mathematics/college/gj1bvd3d4m67dm4cv8szzx8doig3uwpe3m.png)
Where,
![\begin{gathered} a=11 \\ b=13 \\ c=23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i2bznu2272ofop0fxtez7b2muiuo142y9w.png)
Then,
Put the all values into the above formula:
So,
![\begin{gathered} b^(2)=a^(2)+c^(2)-2ac\text{c}osB \\ 13^2=11^2+23^2-2*11*23*\text{c}osB \\ 169=121+529-506cosB \\ 169=650-506cosB \\ -506cosB=169-650 \\ -506cosB=-481 \\ cosB=(481)/(506) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/86dyeatfpumj8rdth04royjan3c55tv9vh.png)
Then,
![\begin{gathered} cosB=(481)/(506) \\ cosB=0.95059 \\ B=cos^(-1)(0.9506) \\ B=18.08629 \\ B=18.09 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o0rpelrp9kepblc7quwp60ybgtao3bbvm7.png)
Final answer:
Hence, the correct option is A and the value of angle B is shown below:
![B=18.09](https://img.qammunity.org/2023/formulas/mathematics/college/z5qv7nu8md4et7brp5yejhn57xgrnuz9ps.png)