Laws of Exponents
* Product. When multiplying like bases, keep the base the same and add the exponents. Example:
![x^3\cdot x^5=x^(3+5)=x^8](https://img.qammunity.org/2023/formulas/mathematics/college/mflcjh97ondtuaeisxeef5k5a56hinft5h.png)
* Power to another power: When raising a base with a power to another power, keep the base the same and multiply the exponents. Example:
![(x^3)^5=x^(3\cdot5)=x^(15)](https://img.qammunity.org/2023/formulas/mathematics/college/9sy6n3k1p2isoe2aeie8slsgjczk3jxnfm.png)
* Division: When dividing like bases, keep the base the same and subtract the denominator exponent from the numerator exponent. Example:
![(x^(14))/(x^4)=x^(14-4)=x^(10)](https://img.qammunity.org/2023/formulas/mathematics/college/bpn80kseyyo48mufmpro53on8w3o5rgqhf.png)
* Zero exponents: A real base raised to the exponent 0 is equal to 1. Examples:
![\begin{gathered} x^0=1 \\ 2^0=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w4gyx20zvypoqw96m449790z5mvxe8cok5.png)
* Negative Power: When a negative exponent is used to raise a number, convert it to a reciprocal to make the exponent positive. Examples:
![\begin{gathered} x^(-2)=(1)/(x^2) \\ (3)/(x^(-5))=3x^5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ojhs1opt6ipvd7yifypgrlu7qnzdut4p8k.png)