Since the angles ∠P and ∠Q are complementary, then:
![∠P+∠Q=90º](https://img.qammunity.org/2023/formulas/mathematics/college/m8033llljk9j60l2yziuod9dq5553l7qgg.png)
Since ∠P is 40º greater than ∠Q, then:
![∠P=∠Q+40º](https://img.qammunity.org/2023/formulas/mathematics/college/tbjid9ydlwkazdeuq3nsdzekxkkaosnt1v.png)
Replace this expression for ∠P in the first equation and solve for ∠Q:
![\begin{gathered} ∠P+∠Q=90º \\ \\ \Rightarrow∠Q+40º+∠Q=90º \\ \\ \Rightarrow2∠Q+40º=90º \\ \\ \Rightarrow2∠Q=50º \\ \\ \therefore∠Q=25º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pu0mnope35515zxl1ruhaq3axgobq893vd.png)
Since ∠P is 40º greater than ∠Q, then ∠P=65º.
Therefore, the measures of the angles ∠P and ∠Q are:
![\begin{gathered} ∠P=65º \\ ∠Q=25º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1yjdumifazt6k7jswj64p7c8qe1njotsxp.png)