20.9k views
1 vote
Use the property of logarithm to expand and simplify the expression ?

Use the property of logarithm to expand and simplify the expression ?-example-1
User Bjarven
by
8.9k points

1 Answer

7 votes

Simplify expression


\begin{gathered} \log _(12)\sqrt[3]{(12+x)/(144x)}= \\ =\log _(12)((12+x)/(144x))^{(1)/(3)}= \\ =(1)/(3)\log _(12)((12+x)/(144x))= \\ =(1)/(3)(\log _(12)(12+x)-\log _(12)(144x))= \\ =(1)/(3)(\log _(12)(12+x)-(\log _(12)(144)+\log _(12)(x)))= \\ =(1)/(3)(\log _(12)(12+x)-2+\log _(12)(x))= \\ =(1)/(3)\log _(12)(12+x)-(2)/(3)+(1)/(3)\log _(12)x \end{gathered}

So our final answer will be:


(1)/(3)\log _(12)(12+x)-(2)/(3)+(1)/(3)\log _(12)x

User Henrik Lindberg
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories