23.38 ° to the positive x-axis
Step-by-step explanation
Step 1
draw the vectors
Step 2
add the vectors, ( component to component)
so
a) get the components of V1

b) components of V2

c) add

so, the magnitude of the displacement is
![\begin{gathered} \lvert Vd\rvert=\sqrt[]{V^2_x+V^2_y} \\ replace \\ \lvert Vd\rvert=\sqrt[]{23.87^2+12.9^2} \\ \lvert Vd\rvert=27.132 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/oouq1dfk5vzyljnqheyjaxyyevs6twla02.png)
finally, the direction
as we have a rigth triangle
let
opposite side= 12.9
adjacent side=23.8
Now, use the tan function to find the angles
so

therefore, the direction of the resultant is
23.38 ° to the positive x-axis
I hope this helps you