446,265 views
10 votes
10 votes
Derivative of tan^2 x

User Steve Greatrex
by
3.0k points

1 Answer

20 votes
20 votes

Answer:


2sec^2xtanx

Explanation:


(d)/(dx) tan^2x


(d)/(dx) tanxtanx


((d)/(dx)tanx)(tanx)+(tanx)((d)/(dx)tanx)


(d)/(dx)tanx=(d)/(dx)(sinx)/(cosx)=((cosx)(cosx)-(sinx)(-sinx))/((cosx)^2)=(cos^2x+sin^2x)/(cos^2x)=(1)/(cos^2x)=sec^2x


(sec^2x)(tanx)+(tanx)(sec^2x)


2sec^2xtanx

Helpful tips:

Product Rule:
(d)/(dx)f(x)g(x)=f'(x)g(x)+f(x)g'(x)=(d)/(dx)f(x)*g(x)+f(x)*(d)/(dx)g(x)

Quotient Rule:
(d)/(dx)(f(x))/(g(x))=(g(x)f'(x)-f(x)g'(x))/((g(x))^2)=(g(x)(d)/(dx)f(x)-f(x)(d)/(dx)g(x))/((g(x))^2)

Pythagorean Identity:
cos^2x+sin^2x=1

User Alan Cabrera
by
3.7k points