Answer:
The parametric equation for y is:
![y=6t^2-20t+12](https://img.qammunity.org/2023/formulas/mathematics/college/10vujngealkwql9wlcqy3wwjdk16w1ghdx.png)
Step-by-step explanation:
To solve this problem, given x = t-2, we replace this value in the original equation.
The original expression is:
![y=6x^2+4x-4](https://img.qammunity.org/2023/formulas/mathematics/college/x5mfuuz6vuke0bgu6wzztlp4vgd3mg80jp.png)
Then, x = t - 2:
![y=6(t-2)^2+4(t-2)-4](https://img.qammunity.org/2023/formulas/mathematics/college/6ay5gvkxsazcgjk6nun8rs9975x4n0lmbz.png)
Now, we can develop the squared binomial, and apply distributive property in the second parentheses:
![y=6(t^2-4t+4)+4t-8-4](https://img.qammunity.org/2023/formulas/mathematics/college/dntpbq5ewz36nnwt7lr5bphouw2z3c22j2.png)
Apply distributive property in the parentheses:
![y=6t^2-24t+24+4t-12](https://img.qammunity.org/2023/formulas/mathematics/college/u4bpr5vq1h8sh2y8n5u32i3ywf4ncpq263.png)
And solve the sums and rests:
![y=6t^2-20t+12](https://img.qammunity.org/2023/formulas/mathematics/college/10vujngealkwql9wlcqy3wwjdk16w1ghdx.png)