Given monomials are (3/4)pq , (1/2)qr² , -5p²r³ and -6r⁵
On multiplying them then
⇛ [(3/4)pq]×[(1/2)qr²]×[-5p²r³]×[-6r⁵]
⇛ [(3/4)×(1/2)×(-5)×(-6)]×(pq×qr²×p²r³×r⁵)
⇛[(3×1×-5×-6)/(4×2)](p×p²)×(q×q)×(r²×r³×r⁵)
⇛ (90/8)×p³×q²×r¹⁰
Since a^m × a^n = a^(m+n)
⇛ (45/2)×p³×q²×r¹⁰
⇛( 45/2 ) p³q²r¹⁰
Answer:- [(3/4)pq]×[(1/2)qr²]×[-5p²r³]×[-6r⁵] = (45/2)p³q²r¹⁰